Spring 2012

Applied Algebraic Topology, Homework 1

Due: Tuesday, May 1 in class

1. Given a simplicial complex K, the **star** $\operatorname{St}(\sigma)$ of a simplex $\sigma \in K$ is the collection of its cofaces. It is in general not a simplicial complex in its own right. The simplicial complex consisting of $\operatorname{St}(\sigma)$ and all faces is called the **closed star** $\overline{\operatorname{St}}(\sigma)$. The **link** $\operatorname{Lk}(\sigma)$ is the collection of simplices in $\overline{\operatorname{St}}(\sigma)$ which are disjoint from σ :

$$Lk(\sigma) := \{ \tau \in \overline{St}(\sigma) \mid \sigma \cap \tau = \emptyset \}.$$

i) What are the stars and links of the simplices (a), (b) and (ab) in the following complex?

- ii) Prove or give a counterexample: $Lk(\sigma)$ is always a simplicial complex.
- iii) Prove or give a counterexample: For every edge (ab) in a simplicial complex, $Lk(ab) = Lk(a) \cap Lk(b)$.

(6 points)

2. Recall that the simplicial complex made out of a *d*-dimensional simplex Δ^d and all its faces has $2^{d+1} - 1$ simplices.

- i) Find a formula for the number of simplices in the first barycentric subdivision $Sd(\Delta^d)$. A recursive formula with proof is fine.
- ii) Prove that the number of simplices in $Sd(\Delta^d)$ is bounded below by (d+1)!.

(10 points)

3. Write a MATLAB function to determine the orientation of a simplex. The function should receive a vector with a permutation (i_1, \ldots, i_k) of $(1, \ldots, k)$ as the argument and return a boolean value that states whether the abstract (k-1)-simplex $\sigma(i_1, \ldots, i_k)$ has the same orientation as $\sigma(1, \ldots, k)$. Design a function with asymptotic runtime complexity O(k).

Test the function with the sequences (1,3,2), (4,5,3,2,1), (6,7,3,5,4,1,8,2) and (2,7,4,1,6,3,8,5) and report the results.

Send your code to Daniel by e-mail for credit.

 $(10 \ points)$

4. Consider the following simplicial complex K. Fix \mathbb{R} as the coefficient field.

- i) What are the dimensions of $C_k(K)$ for k = 0, 1, 2?
- ii) Choose bases for $C_k(K)$. Give ∂_1 and ∂_2 in matrix form with respect to these bases.
- iii) Determine the rank and nullity of ∂_1 , ∂_2 .
- iv) Give bases for the cycle and boundary vector spaces $Z_2(K)$, $B_2(K)$, $Z_1(K)$, $B_1(K)$, $B_0(K)$.
- **v)** Compute the homology of K.

(10 points)